Prove that 12tan(x2)+14tan(x4)+...+12ntan(x2n)=12ncot+(x2n)−cot x for all nϵN and 0<x<x2.
Let P(n) : 12tan(x2)+14tan(x4)+...+12ntan(x2n)=12ncot+(x2n)−cot x
For n = 1
12tanx2=12cot(x2)−cot x
=121tanx2−1tan x
=12tanx2−1(−2tanx22−tan2x2)
=12tanx2−1−tan2x21−tanx2
=1−1+tan2x22tanx2
=tan2x22tanx2
=12tanx2
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
12tan(x2)+14tan(x4)+......+12ktan(x2k)=12kcot(x2k)−cot x ......(i)
We have to show that,
12tanx2+14tan(x4)+....+12ktan(x2k)+(x2k+1)tan(x2K+1)=12k+1cot(x2k+1)−cot x
Now,
={12tanx2+14tan(x4)+.....+12ktan(x2k)}+12k+1tan(x2k+1)
=12kcot(x2k)−cot x+12k+1tan(x2k+1)
=12kcot(x2k)−cotx+12.2k−1cot(x2k.12)−cot x
=12k⎛⎜⎝1−tan2(x2k+1)2tan(x2k+1+12tan{(x2.2k)})⎞⎟⎠−cot x
=12k(1−tan2(x2k+1)+tan2(x2k+1))−cot x=12k+1⎛⎜⎝1tan(x2k+1)⎞⎟⎠−cot x=12k+1cot(x2k+1)−cot x
⇒P(n) is true for n = k + 1
⇒P(n) is true for all nϵN by PMI.