Prove that n77+n55+n33+n22−37210 n is a positive integer for all nϵN.
Let P(n):n77+n55+n33+n22−37210 n is a positive integer
For n = 1
17+15+13+12−37210
=30+42+70+105−37210=247−37210
It is a positive integer
⇒ P(n) is true for n = 1
Let P(n) is true for n = k,
k77+k55+k33+k22−37210 k is positive integer
k77+k55+k33+k22−37210k=λ
For n = k + 1,
(k+1)77+(k+1)75+(k+1)33+(k+1)22−37210(k+1)
=17[k7+7k6+21k5+35k4+35k3+21k2+7k+1]+15[k5+5k4+10k3+10k2+5k+1]+13[53+3k62+3k+1]+12[k2+2k+1]−37k210−37210=[k77+k55+k33+k22−37k210]+[k6+3k5+5k4+5k3+3k2+k+17+k4+2k3+2k2+15+k2+k+13+k+12−37210]
=λ+k6+3k5+6k4+7k3+6k2+3k+17+15+13+12−37210
=λ+k6+3k5+6k4+7k3+6k2+3k+1
= Positive integer
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all nϵN by PMI.