Prove that:(sec8A-1)(sec4A-1)=tan8Atan2A.
Given: we have(sec8A-1)(sec4A-1)=tan8Atan2A.
Consider the LHS
(sec8A-1)(sec4A-1)⇒(1–cos8A)cos8A(1–cos4A)cos4A[∵secA=1cosA]⇒2sin²4A2sin²2A×cos4Acos8A[∵cos2A=1-2sin2a]⇒(2sin4A×cos4A)×sin4Acos8A2sin²2A⇒sin8Acos8A×sin4A2sin²2A⇒tan8A×sin4A2sin²2A⇒tan8A×2sin2A×cos2A2sin²2A⇒tan8A×cos2Asin2A⇒tan8A×cot2A⇒tan8Atan2A
Hence Proved.
Prove that: 19!+110!+111!=12211!
Evaluate: sec8A−1sec4A−1=