wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :

sinA / cotA + cosecA = 2 + sinA / cotA - cosecA

Open in App
Solution

LHS:
SinA/cotA+cosecA
=sinA/(cosA/sinA+1/sinA)
=sinA/{(cosA+1)/sinA}
=sin²A/(1+cosA)
=(1-cos²A)/(1+cosA)
=(1+cosA)(1-cosA)/(1+cosA)
=1-cosA

RHS:

2+sinA/cotA-cosecA
=2+sinA/(cosA/sinA-1/sinA)
=2+sinA/{(cosA-1)/sinA}
=2+sin²A/(cosA-1)
=2+(1-cos²A)/{-(1-cosA)}
=2-(1+cosA)(1-cosA)/(1-cosA)
=2-(1+cosA)
=2-1-cosA
=1-cosA
∴, LHS=RHS (Proved)
​​​​
hope you understand this
please like if you are satisfied

flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon