1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

# Ravish has three boxes whose total weight is $60\frac{1}{2}$ kg. Box B weighs $3\frac{1}{2}$ kg more than box A and box C weighs $5\frac{1}{3}$ kg more than box B. Find the weight of box A.

Open in App
Solution

## $\mathrm{Let}\mathrm{the}\mathrm{weight}\mathrm{of}\mathrm{box}\mathrm{A}\mathrm{be}\mathrm{x}\mathrm{kg}.\phantom{\rule{0ex}{0ex}}\mathrm{Therefore},\mathrm{the}\mathrm{weights}\mathrm{of}\mathrm{box}\mathrm{B}\mathrm{and}\mathrm{box}\mathrm{C}\mathrm{will}\mathrm{be}\left(\mathrm{x}+3\frac{1}{2}\right)\mathrm{kg}\mathrm{and}\left(\mathrm{x}+3\frac{1}{2}+5\frac{1}{3}\right)\mathrm{kg},\mathrm{respectively}.\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathrm{According}\mathrm{to}\mathrm{the}\mathrm{question},\phantom{\rule{0ex}{0ex}}\mathrm{x}+\left(\mathrm{x}+3\frac{1}{2}\right)+\left(\mathrm{x}+3\frac{1}{2}+5\frac{1}{3}\right)=60\frac{1}{2}\phantom{\rule{0ex}{0ex}}\mathrm{or}3\mathrm{x}=\frac{121}{2}-\frac{7}{2}-\frac{7}{2}-\frac{16}{3}\phantom{\rule{0ex}{0ex}}\mathrm{or}3\mathrm{x}=\frac{363-21-21-32}{6}\phantom{\rule{0ex}{0ex}}\mathrm{or}3\mathrm{x}=\frac{289}{6}\phantom{\rule{0ex}{0ex}}\mathrm{or}\mathrm{x}=\frac{289}{18}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathrm{Thus},\mathrm{weight}\mathrm{of}\mathrm{box}\mathrm{A}=\frac{289}{18}\mathrm{kg}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

Suggest Corrections
7
Join BYJU'S Learning Program
Related Videos
Basics Revisited
MATHEMATICS
Watch in App
Explore more
Join BYJU'S Learning Program