given, sin[cot−1{tan(cos−1x)}]
Let cos−1x=a
⇒cosa=x
⇒sina=√1−cos2a=√1−x2
⇒tana=sinacosa=√1−x2x
⇒a=tan−1√1−x2x
∴a=cos−1x=tan−1√1−x2x
∴sin[cot−1{tan(tan−1√1−x2x)}]
=sin[cot−1{√1−x2x}]
Let cot−1{√1−x2x}=b
⇒cotb=√1−x2x
⇒cosec2b=1+cot2b=1+1−x2x2=x2+1−x2x2=1x2
⇒cosec b=1x
⇒sinb=1cosec b=11x=x
⇒b=sin−1x
=sin[b]
=sin[sin−1x]=x