The correct option is
B log(yx)−1=Cyydx+dlog(y/x)dy−2xdy=0
dydx=−yxlog(y/x)−2x=−y−x(2−logy/x)=y/xx−logy/x
Putting F(x,y)=dydx and finding F(λx,λy)
F(x,y)=y/x2−log(y/x)⇒
F(λx,λy)=λyλx2−log(λyλx)=y/x2−log(y/x)=λo[F(x,y)]
This ,F(x,y) is a homogeneous eq function of order o therefore dydx is homogeneous differential equation solving dydx by putting y=vx
y=vx
dydx=xdvdx+vdxdx⇒dydx=xdvdx+v
Putting value of dydx and y=vx in (i)
dydx=y/x2−log(y/x)
v+xdvdx=vx/x2−log(vxx)=v2−logv
xdvdx=v2−logv−v⇒xdvdx=vlogv−v2−logv
∫r−logvvlogvdv=∫dxx⇒∫2−logv−v(1−logv)dx=logx+logc
By solving
log(logy/x−1)=logxcy/x
logy/x−1=cy
cy=log|y/x|−1