wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 3tan2x4tan3x=tan23xtan2x

A
x=nπ, nπtan13/5nϵz
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=nπ, nπcot13/5nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=nπ/2, nπtan13/5nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=nπ, nπtan12/5nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A x=nπ, nπtan13/5nϵz
3tan2x4tan3x=tan23x.tan2x
4tan2x4tan3x=tan2x+tan22x.tan2x
for cos2x.cos3x0
4sinxcos2x.cos3x=tan2x(1+tan2x)
4sinxcos2x.cos3x=2sinx.cosxcos2x.cos23x
sinx=0orcosxcos3x=2
x=nπ, nπtan135

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon