Solve the equation
x2−10x+21=0
Compare x2−10x+21=0 with the equation
ax2+bx+c=0
a=1,b=−10 and c=21
We know for the equation ax2+bx+c=0
x=−b±√b2−4ac2a are the roots of the equation.
⇒x=−(−10)±√(−10)2−4×(1)×(21)2(1)
=10±√100−842
=10±√162
=10±42
⇒x=10+42=142 and x=10−42=62
∴x=7 and 3.