The correct option is D x=105 and y=10
From the first equation,
log10x{1+12+14+..∞}=y
⇒log10x{11−1/2}=y
⇒2log10x=y⋯(1)
From the second equation,
⇒y2{1+2y−1}y2{4+3y+1}=207log10x
⇒2y3y+5=207log10x
⇒7y(2log10x)=60y+100
⇒7y(y)=60y+100 from (1)
⇒7y2−60y−100=0
∴(y−10)(7y+10)=0
⇒y=10,y≠−107(∵yϵI+)
from (1), 2log10x=10
⇒log10x=5
∴x=105
Hence required solution is,
x=105andy=10