The correct option is B x=4
y=6
z=8
x+6y=5z.........(1)
7x+z=6y.........(2)
5x+6y−4z=24.....(3)
From (1), x+6y−5z=0
From (2), 7x+z−6y=0
Hence,
x6×1−(−6).(−5)=y(−5×7)−(1×1)=z1.(−6)−7.(6)
⇒x6−30=y−35−1=z−6−42
⇒x−24=y−36=z−48
⇒x2=y3=z4
[Multiplying each fraction by -12]
Let k denote the common value of these fractions.
⇒x2=y8=z5=k
⇒x=2k,y=3k,z=4k......(A)
Substituting the values of x, y and z in (3), we get,
⇒5x+6y−4z=24
⇒5(2k)+6(3k)−4(4k)=24
⇒k(10+18−16)=24
⇒12k=24
∴k=2
Hence, from (A), we get,
x=4
y=6
z=8