1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
The angle bet...
Question
The angle between the line
r
→
=
(
5
i
^
-
j
^
-
4
k
^
)
+
λ
(
2
i
^
-
j
^
+
k
^
)
and the plane
r
→
·
(
3
i
^
-
4
j
^
-
k
^
)
+
5
=
0
is ____________.
Open in App
Solution
Since the angle between the line
r
→
=
a
→
+
λ
b
→
and
plane
r
→
.
n
→
=
d
is
given
by
sin
θ
=
b
→
.
n
→
b
→
n
→
Given
line
r
→
=
5
i
^
-
j
^
-
4
k
^
+
λ
2
i
^
-
j
^
+
k
^
b
→
=
2
i
^
-
j
^
+
k
^
and
the
plane
r
→
.
3
i
^
-
4
j
^
-
k
^
+
5
=
0
n
→
=
3
i
^
-
4
j
^
-
k
^
i
.
e
.
sin
θ
=
2
i
^
-
j
^
+
k
^
.
3
i
^
-
4
j
^
-
k
^
2
i
^
-
j
^
+
k
^
3
i
^
-
4
j
^
-
k
^
=
6
+
4
-
1
4
+
1
+
1
9
+
16
+
1
=
9
6
26
sin
θ
=
9
156
i.e. angle between given line and plane is
sin
-
1
9
156
Suggest Corrections
0
Similar questions
Q.
Find the angle between the line
r
→
=
2
i
^
+
3
j
^
+
9
k
^
+
λ
2
i
^
+
3
j
^
+
4
k
^
and the plane
r
→
·
i
^
+
j
^
+
k
^
=
5
.
Q.
Consider the following 3 lines in space
L
1
:
→
r
=
∧
3
i
−
∧
j
+
2
∧
k
+
λ
(
2
∧
i
+
4
∧
j
−
∧
k
)
L
2
:
→
r
=
∧
i
−
∧
j
+
3
∧
k
+
μ
(
4
∧
i
+
2
∧
j
+
4
∧
k
)
L
3
:
→
r
=
∧
3
i
+
∧
2
j
−
2
∧
k
+
t
(
2
∧
i
+
∧
j
+
∧
2
k
)
Then which one of the following pair(s) are in the same plane.
Q.
Find the shortest distance between the following pairs of lines whose vector equations are:
(i)
r
→
=
3
i
^
+
8
j
^
+
3
k
^
+
λ
3
i
^
-
j
^
+
k
^
and
r
→
=
-
3
i
^
-
7
j
^
+
6
k
^
+
μ
-
3
i
^
+
2
j
^
+
4
k
^
(ii)
r
→
=
3
i
^
+
5
j
^
+
7
k
^
+
λ
i
^
-
2
j
^
+
7
k
^
and
r
→
=
-
i
^
-
j
^
-
k
^
+
μ
7
i
^
-
6
j
^
+
k
^
(iii)
r
→
=
i
^
+
2
j
^
+
3
k
^
+
λ
2
i
^
+
3
j
^
+
4
k
^
and
r
→
=
2
i
^
+
4
j
^
+
5
k
^
+
μ
3
i
^
+
4
j
^
+
5
k
^
(iv)
r
→
=
1
-
t
i
^
+
t
-
2
j
^
+
3
-
t
k
^
and
r
→
=
s
+
1
i
^
+
2
s
-
1
j
^
-
2
s
+
1
k
^
(v)
r
→
=
λ
-
1
i
^
+
λ
+
1
j
^
-
1
+
λ
k
^
and
r
→
=
1
-
μ
i
^
+
2
μ
-
1
j
^
+
μ
+
2
k
^
(vi)
r
→
=
2
i
^
-
j
^
-
k
^
+
λ
2
i
^
-
5
j
^
+
2
k
^
and
,
r
→
=
i
^
+
2
j
^
+
k
^
+
μ
i
^
-
j
^
+
k
^
(vii)
r
→
=
i
^
+
j
^
+
λ
2
i
^
-
j
^
+
k
^
and
,
r
→
=
2
i
^
+
j
^
-
k
^
+
μ
3
i
^
-
5
j
^
+
2
k
^
(viii)
r
→
=
8
+
3
λ
i
^
-
9
+
16
λ
j
^
+
10
+
7
λ
k
^
and
r
→
=
15
i
^
+
29
j
^
+
5
k
^
+
μ
3
i
^
+
8
j
^
-
5
k
^
[NCERT EXEMPLAR]
Q.
If
θ
is the angle between the line
→
r
=
2
i
+
j
−
k
+
(
i
+
j
+
k
)
t
and the plane
→
r
⋅
(
3
i
−
4
j
+
5
k
)
=
q
, then
Q.
Show that the plane whose vector equation is
r
→
·
i
^
+
2
j
^
-
k
^
=
1
and the line whose vector equation is
r
→
=
-
i
^
+
j
^
+
k
^
+
λ
2
i
^
+
j
^
+
4
k
^
are parallel. Also, find the distance between them.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Higher Order Derivatives
MATHEMATICS
Watch in App
Explore more
Higher Order Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app