The correct option is A eπ/42[2eπ/4+ln2−2]
π2∫π4ex(ln(cosx))(cosxsinx−1) cosec2x dx
Let
I=∫(ln(cosx))⋅ex(cotx− cosec2x) dx
We know that,
∫ex(f(x)+f′(x))=exf(x)+c⇒∫ex(cotx− cosec2x) dx=excotx+c
And using by parts, we get
⇒I=ln(cosx)excotx+∫tanx⋅ex⋅cotx dx⇒I=ln(cosx)excotx+∫ex dx+c⇒I=ex[ln(cosx)⋅cotx+1]+c
So,
π2∫π4ex(ln(cosx))(cosxsinx−1) cosec2x dx=(ex[ln(cosx)⋅cotx+1])π/2π/4=eπ/2[limx→π/2ln(cosx)⋅cotx]+eπ/2−eπ/4[1−ln√2]
Now, solving the limit we get
limx→π/2ln(cosx)⋅cotx=limx→π/2ln(cosx)tanx
Using L'Hospital's Rule, we get
=limx→π/2−sinxcosx⋅sec2x=limx→π/2−sinxcosx=0
Therefore,
eπ/2[limx→π/2ln(cosx)⋅cotx]+eπ/2−eπ/4[1−ln√2]=eπ/2−eπ/4[1−ln√2]=eπ/42[2eπ/4+ln2−2]