wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral 1+2cotx(cosecx+cotx)dx(0<x<π2) is equal to?

A
4log(sinx2)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2log(sinx2)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2log(cosx2)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4log(cosx2)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2log(sinx2)+c
We have,
I=1+2cotx(cosecx+cotx)dx
We know that
cosec2xcot2x=1
then,
I=cosec2xcot2x+2cotx(cosecx+tanx)dx
I=(cosec2xcot2x+2cotxcosecx+2cot2x)dx
I=(cosec2x+cot2x+2cotxcosecx)12dx
I=(cosecx+cotx)2dx
(a+b)2=a2+b2+2ab
I=(cosecx+cotx)dx
I=(1sinx+cosxsinx)dx
=(1+cosxsinx)dx
=1+2cos2x212sinx2cosx2dx
cosx=2cos2x21
sinx=2sinx2cosx2
=2cos2x22sinx2cosx2dx
=cosx2sinx2dx
=cotx2dx
on integrating and we get
I=log∣ ∣sinx212∣ ∣+C
cotxdx=logsinx
I=2log(sinx2)+C
Hence, this is the answer.

1179401_1137421_ans_c07765bb02f448709074e2c2ccbae049.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon