The L.C.M. of 9x2+6x+1, 3x2+7x+2 and 2x2+3x−2 is (x+a)(2x−b)(3x+c)2. Then a−b−c=
First expression:
9x2+6x+1=(3x+1)2
Second expression:
3x2+7x+2=3x2+6x+x+2=3x(x+2)+1(x+2)=(3x+1)(x+2)
Third expression: 2x2+3x−2=2x2+4x−x−2=2x(x+2)−1(x+2)=(2x−1)(x+2)
∴ Required L.C.M. is (x+2)(2x−1)(3x+1)2
⟹a=2,b=1,c=1
So, a−b−c=0