The value of cos3π8·cos3π8+sin3π8sin3π8 is
122
12
14
Explanation for correct option
We know that
cos3x=4cos3x-3cosx⇒cos3x=14cos3x+3cosxsin3x=3sinx-4sin3x⇒sin3x=143sinx-sin3x
Using the above formula we get
cos3π8·cos3π8+sin3π8sin3π8=14cos3π8+3cosπ8cos3π8+143sinπ8-sin3π8sin3π8=14cos23π8+3cosπ8cos3π8+3sinπ8sin3π8-sin23π8=14cos23π8-sin23π8+34cosπ8cos3π8+sinπ8sin3π8=14cos3π4+34cos3π8-π8=14cos3π4+34cosπ4=14-12+342=122
Hence, the correct option is OptionA