The value of limx→2√1+√2+x−√3x−2 is
If x=1√3+1 then the value of x+1x is
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
(4x2+4x−3)=?
(a) (2x−1)(2x−3)
(b) (2x+1)(2x−3)
(c) (2x+3)(2x−1)
(d) None of these