The value of cot105° is
3-2
2-3
2+3
3+2
Find the value of cot105°:
cot105°=cot90°+15°=-tan15°[∵cot(90°+θ)=-tanθ]=-tan45°-30°=-tan45°-tan30°1+tan45°tan30°[∵tan(A-B)=tanA-tanB1+tanAtanB]=-1-131+1.13[∵tan(45°)=1,tan(30°)=13]=-3-13+1...1
Now multiply by conjugate of 3+1 in equation 1. then,
cot105°=-3-13+1×3-13-1=-3-3-3+132-12[∵(a+b)(a-b)=a2-b2]=-4-232=-22-32=3-2
Hence, the correct option is A.