Vis a product of the first 41 natural numbers A=V+1. The number of primes among A+1,A+2,A+3,A+4,A+39,A+40.
1
2
3
0
Step 1: Simplify the expression:
Given: V is a product of the first 41 natural numbers and A=V+1
∴A+1,A+2,A+3,A+4,A+39,A+40[∴Given:A=V+1]=V+1+1,V+1+2,V+1+3,V+1+4,V+1+39,V+1+40=V+2,V+3,V+4,V+5,V+40,V+41.........1
Step 2: Solving the equation:
LetV+2,V+3,V+4,V+5,V+40,V+41whereKisoneofthefirst41naturalnumbersbutnot1=V+KK=2,3,4,............41Now,∴Vistheproductoffirst41naturalnumbersGivenSo,Visdivisblebyeachofthefollowingnaturalnumbers.Thus,V+KisalsodivisblebyanyK's.eg:-V+2divisibleby2V+3divisibleby3V+41isdivisbleby41∵PrimenumberisdivisblebyitselfonlybuthereV+Kcontradicts.so,V+KisnotprimenumberTherefore,Thenumberofprimesis0.
Hence, the final answer is an option D.