n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
A = {a, c, e, f, h}, B = {c, d, e, f}, C = {a, b, c, f}
n (A) = 5, n (B) = 4, n (C) = 4
n( A ∩ B) =3
n(B ∩ C) = 2
n( A ∩ C) =3
n( A ∩ B ∩ C) = 2
A ∩ B = {c, e, f}
B ∩ C = {c, f}
A ∩ C = {a, c, f}
A ∩ B ∩ C = {c, f}
A ∪ B ∪ C = {a, c, d, e, f, b, h}
∴ n(A ∪ B ∪ C) = 7 ……………. (1)
n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) = 5 + 4 + 4 – 3 – 2 – 3 + 2 = 15 – 8 = 7 …(2)
∴ (1) =(2)
⇒ n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
Hence it is verified.