The correct option is C −15cosxsin4x−415cosxsin2x−815cosx+C
I=∫sin5xdx=∫sin4xsinxdx=∫(1−cos2x)2sinxdx
Let, t=cosx
⇒dt=−sinxdx=−∫(1−t2)2dt=−∫(1+t4−2t2)dt=−[t+t55−2t33]+c=−cosx−cos5x5+2cos3x3+c=−cos5x5+2cos3x3−cosx+c
Now,
In=∫sinnxdx=−cosxsinn−1xn+n−1nIn−2
∴I5=−cosxsin4x5+45I3=−cosxsin4x5+45[−cosxsin2x3+23I1]=−cosxsin4x5−415cosxsin2x+815∫sinx dx=−15cosxsin4x−415cosxsin2x−815cosx+c′