The correct option is B −g(t)f(t)
x=f(t)=aln(bt)=atlnb --------- (1)
y=g(t)=b−ln(at)=(blna)−t=(alnb)−t=a−tlnb
∴y=g(t)=aln(b−t)=f(−t) -------- (2)
From equations (1) and (2),
xy=1
⇒y=1x
∴dydx=−1x2=−1f2(t)
Also, xy=1⟹−1f2(t)=−g2(t)
∴dydx=−1x2=−y21
Also, xy=1⟹dydx=−yx=−g(t)f(t)