wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the following functions in the simplest form :
tan1(cosxsinxcosx+sinx),0<x<π


Open in App
Solution

Given : tan1(cosxsinxcosx+sinx)
Dividing by cosx in numerator and denominator.
tan1(cosxsinxcosx+sinx)=tan1⎜ ⎜ ⎜cosxsinxcosxcosx+sinxcosx⎟ ⎟ ⎟
tan1(cosxsinxcosx+sinx)=tan1⎜ ⎜ ⎜1sinxcosx1+sinxcosx⎟ ⎟ ⎟
tan1(cosxsinxcosx+sinx)=tan1(1tanx1+tanx)
tan1(cosxsinxcosx+sinx)=tan1⎜ ⎜tanπ4tanx1+tanπ4tanx⎟ ⎟
Using tan(AB) formula, we get
tan1(cosxsinxcosx+sinx)=tan1(tan(π4x))
tan1(cosxsinxcosx+sinx)=π4x


flag
Suggest Corrections
thumbs-up
41
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon