Write the following functions in the simplest form :
tan−1(cosx−sinxcosx+sinx),0<x<π
Given : tan−1(cosx−sinxcosx+sinx)
Dividing by cosx in numerator and denominator.
⇒tan−1(cosx−sinxcosx+sinx)=tan−1⎛⎜
⎜
⎜⎝cosx−sinxcosxcosx+sinxcosx⎞⎟
⎟
⎟⎠
⇒tan−1(cosx−sinxcosx+sinx)=tan−1⎛⎜
⎜
⎜⎝1−sinxcosx1+sinxcosx⎞⎟
⎟
⎟⎠
⇒tan−1(cosx−sinxcosx+sinx)=tan−1(1−tanx1+tanx)
⇒tan−1(cosx−sinxcosx+sinx)=tan−1⎛⎜
⎜⎝tanπ4−tanx1+tanπ4⋅tanx⎞⎟
⎟⎠
Using tan(A−B) formula, we get
⇒tan−1(cosx−sinxcosx+sinx)=tan−1(tan(π4−x))
∴tan−1(cosx−sinxcosx+sinx)=π4−x