Cross Product of Two Vectors
Trending Questions
Let and . If is a vector such that , and the angle between and is the , then is equal to
The point of intersection of the lines →r×→a=→b×→a and →r×→b=→a×→b is
(→a−→b)
→a
→b
(→a+→b)
The scalars l and m such that l→a+m→b=→c where →a, →b and →c are given vectors, are equal to
l=(→c×→b).(→a×→b)|→a×→b|2 ; m=(→c×→a).(→b×→a)|→b×→a|2
l=(→c×→b).(→a×→b)|→a×→b| ; m=(→c×→a).(→b×→a)|→b×→a|
l=|→c×→b|2|→a×→b|2 ; m=|→c×→a|2|→b×→a|2
l=|→c×→a|2|→b×→a|2 ; m=|→c×→b|2|→a×→b|2
- 425
- 375
- 325
- 300
- 4^i+3^j−^k√26
- 2^i−6^j−3^k7
- 3^i−2^j+6^k7
- 2^i−3^j−6^k7
- 2
- 3
- 23
- 32
- one
- zero
- three
- none of these
- infinite
- 10
- 6
- √26
- 2√5
- 2
- 23
- 32
- 2
- 3
- 2√10
- √41
- 6−√17
- 3
- √23
If →a×→b=→c, →b×→c=→a and a, b, c be the moduli of the vectors →a, →b, →c respectively, then
a=1 , b=1
c = 1, a = 1
→a.(→b×→c)=−1
b = 1, c = a
If →u=→a−→b and →v=→a+→b and |→a|=|→b|=2, then |→u×→v|=
2√16−(→a.→b)2
√16−(→a.→b)2
2√4−(→a.→b)2
√4−(→a.→b)2
The scalars l and m such that l→a+m→b=→c where →a, →b and →c are given vectors, are equal to
l=(→c×→b).(→a×→b)|→a×→b|2 ; m=(→c×→a).(→b×→a)|→b×→a|2
l=(→c×→b).(→a×→b)|→a×→b| ; m=(→c×→a).(→b×→a)|→b×→a|
l=|→c×→b|2|→a×→b|2 ; m=|→c×→a|2|→b×→a|2
l=|→c×→a|2|→b×→a|2 ; m=|→c×→b|2|→a×→b|2
- 2^i+^j+^k√6
- 2^i+^j+^k3
- 2^i−^j−^k√3
- 2^i−^j−^k3
- True
- False
(i) A’
(ii) B’
(iii) A ‘ ∪ B’
(iv) A’ ∩ B’
(v) (A ∪ B)’
(vi) (A ∩ B)’
(vii) (A’)’
(viii) (B’)’