limh→0(a+h)2sin(a+h)−a2sinah
=limh→0(a+h)2[sin(a+h)−sina]+sina[(a+h)2−a2]h
=limh→01h(a+h)22cos(a+h2)sinh2+limh→01h(sina)[a2+2ah+h2−a2]
=limh→0(a+h)2cos(a+h2).sin(h/2)(h/2)+limh→0(sina)(2a+h)
=a2cosa.1+(sina)(2a)
=a(acosa+2sina).
Using the L Hospital rule, we have
limh→0(a+h)2sin(a+h)−a2sinah
=limh→0(a+h)2cos(a+h)+2(a+h)sin(a+h)1
=(a)2cos(a+h)+2(a)sin(a)
Hence b=2