wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limh0(a+h)2sin(a+h)a2sinah is a(acosa+bsina).
Find the value of b

Open in App
Solution

limh0(a+h)2sin(a+h)a2sinah
=limh0(a+h)2[sin(a+h)sina]+sina[(a+h)2a2]h
=limh01h(a+h)22cos(a+h2)sinh2+limh01h(sina)[a2+2ah+h2a2]
=limh0(a+h)2cos(a+h2).sin(h/2)(h/2)+limh0(sina)(2a+h)
=a2cosa.1+(sina)(2a)
=a(acosa+2sina).
Using the L Hospital rule, we have
limh0(a+h)2sin(a+h)a2sinah
=limh0(a+h)2cos(a+h)+2(a+h)sin(a+h)1
=(a)2cos(a+h)+2(a)sin(a)
Hence b=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon