Find the values of x and y if :
52+x+1y−4=2
62+x−3y−4=1
Here, x ≠ -2 and y ≠ 4.
x = 1, y = 7
Let p=12+x and q=1y−4
Thus, 5p + q = 2 .... (i)
6p - 3q = 1 .... (ii)
On multiplying equation (i) by 3, we get
15p + 3q = 6 .... (iii)
On adding equations (iii) and (ii), we get
21p = 7
⇒p=13
On substituting the value of p in equation (i), we get
5×13+q=2
⇒q=2−53
⇒q=13
Now, p=12+x
⇒13=12+x
⇒x=1
Similarly q=1y−4
⇒13=1y−4
⇒y=7
∴ x = 1 and y = 7