Let m be the slope of tangent to the curve e2y=1+x2 then set of all values of m is :
m be the slope of tangent.
Given equation of curve is
e2y=1+x2
Taking log both side and we get,
loge2y=log(1+x2)
2y=log(1+x2)
On differentiating and we get,
2dydx=11+x2ddx(1+x2)
⇒2dydx=11+x2ddx(1+x2)
⇒2dydx=11+x2ddx2x
⇒dydx=x1+x2
m=dydx=x1+x2
On put x=(−1,1)
So,
m=11+1=12
m=−11+1=−12
Hence, the value of m is [−12,12]