Solve each of the following quadratic equations:
a(x−b)+b(x−a)=2,x≠b,a
a(x−b)+b(x−a)=2
a(x−a)+b(x−b)(x−a)(x−b)=2
⇒ax–a2+bx–b2=2x2–2ax–2bx+2ab
⇒ 2x2–2ax–ax–2bx–bx+a2+b2+2ab=0
⇒2x2–3x(a+b)+(a+b)2=0
⇒2x2–2x(a+b)–x(a+b)+(a+b)2=0
⇒2x(x–(a+b))–(a+b)(x–(a+b))=0
⇒ (2x–(a+b))(x–(a+b))=0
⇒x=a+b2 or x=a+b