The value of sin2tan-113+costan-122 is
1615
1415
1215
1115
Explanation for the correct option
The given trigonometric expression: sin2tan-113+costan-122.
Let us assume that, 2tan-113=x
⇒tan-113=x2⇒tanx2=13
It is known that, sin(2θ)=2tan(θ)1+tan2(θ).
Thus, sinx=2tanx21+tan2x2.
⇒sinx=2131+132∵tanx2=13⇒sinx=231+19⇒sinx=239+19⇒sinx=23109⇒sinx=23×910⇒sinx=35⇒x=sin-135⇒2tan-113=sin-135∵2tan-113=x
Let us assume that, tan-122=y
⇒tany=22⇒tan2y=222⇒sec2y-1=8∵sec2θ-tan2θ=1⇒sec2y=9⇒secy=9⇒secy=3⇒1secy=13⇒cosy=13∵secθ=1cosθ⇒y=cos-113⇒tan-122=cos-113∵tan-122=y
Thus, sin2tan-113+costan-122=sinsin-135+coscos-113
⇒sin2tan-113+costan-122=35+13⇒sin2tan-113+costan-122=3×3+1×515⇒sin2tan-113+costan-122=9+515⇒sin2tan-113+costan-122=1415
Therefore, the value of sin2tan-113+costan-122 is 1415.
Hence, the correct option is (B).