Let α=(−1+3i)2 . If a=1+α∑k=0100α2k and b=∑k=0100α3k, then a and b are the roots of the quadratic equation:
x2+101x+100=0
x2+102x+101=0
x2−102x+101=0
x2−101x+100=0
Find the required quadratic equation:
Given, α=-12+i32
⇒ α=ω
a=1+α∑k=0100α2k
=(1+α)[1+α2+α4+⋯.+α200]=(1+α)(α2)101-1(α2-1)=ω+1ω202-1(ω2-1)=ω+1ω-1ω+1ω-1=1
b=∑k=0100α3k
=1+α3+α6+.....+α300=1+ω3+ω6+.....+ω300=1+1+ 1+.....+101times=101
∴Required equation is x2-a+bx+ab=0
⇒ x2−102x+101=0
Hence, Option ‘C’ is Correct.
Let α≠β, α2+3=5α and β2=5β−3. Which of the following is a quadratic equation whose roots are αβ and βα?