limx→0x(e1+x2+x4-1x-1)1+x2+x4-1=
e
1
0
Does not exist
Explanation for correct option.
Step1. Simplifying the integration
Given limit, limx→0x(e1+x2+x4-1x-1)1+x2+x4-1
Divide Numerator & denominator with ‘X’.
limx→0x(e1+x2+x4-1x-1)x1+x2+x4-1xlimx→0(e1+x2+x4-1x-1)1+x2+x4-1x
Step2. Finding value of limit.
We know that,
limx→0ex-1x=1
limx→0(e1+x2+x4-1x-1)1+x2+x4-1x=1
Hence the correct option is (B).
If x+1x=3, calculate x2+1x2,x3+1x3 and x4+1x4.
If x+1x=√5, find the values of x2+1x2 and x4+1x4.
x4+x2+1 by x2+x+1