For x belongs to R, Findlimx↦∞(x-3)(x+2)x=?
e
e-1
e-5
e5
The explanation for the correct option:
Step1. Construction :
We have limx↦∞(x-3)(x+2)x
=limx↦∞(x+2-3-2)(x+2)x=limx↦∞1-5(x+2)x
This is the form of (1)∞and the formula for this
limx→∞f(x)g(x)=elimx→∞g(x)[f(x)-1]
Step2. Find the limit value :
So, limx↦∞1-5(x+2)x=elimx↦∞x1-5(x+2)-1
=elimx↦∞x-5(x+2)=e-5limx↦∞x1(x+2)=e-5limx↦∞1(1+2x)=e-5
Hence the correct option is (C).
limx→∞{3x−43x+2}x+13
limx→∞{3x2+14x2−1}x31+x
limx→∞{x2+2x+32x2+x+5}3x−23x+2