If f'(x)=f(x),f(0)=1, thenlimx→0[f(x)-1]x=
0
1
-1
2
Explanation for the correct option:
Find the value of limx→0[f(x)-1]x:
f'(x)=f(x)f(0)=1
Applying L-Hospitals rule in limx→0[f(x)-1]x we get,
limx→0f'(x)-01=f'(0)⇒f'(0)=1Given
Hence, the correct option is A.
If f(x)=x−1x+1, x≠−1 then show that f(f(x))=−1x, where x≠0).