If log42+log44+log4x+log416=6, then x=
64
32
8
4
Explanation for the correct option:
Given: log42+log44+log4x+log416=6
⇒log48+log416x=6[∵logab=loga+logb]⇒log48×16x=6[∵logab=loga+logb]⇒log4128x=6⇒128x=46[∵logab=c⇒b=ac]⇒x=4096128⇒x=32
Hence option (B) i.e. 32 is correct.