Ify=cos(sinx2), then at x=π2,dydx is equals to ?
-2
2
0
none of these
Explanation for the correct option:
Find the value of dydx:
Given function,
y=cos(sinx2)
Differentiate the given function with respect to x
dydx=-sin(sinx2).cosx2.2x∵dcosxdx=-sinx
Put value x=π2 in obtained function:
dydx=-sin(sinπ2).cos(π2).2π2=0
Hence, the option (C) is correct.
If y=[x+√x2+a2]n,then dydx is equal to