∫0111+x+x2dx=
π3
π23
2π33
π33
Explanation for correct option:
Let I=∫0111+x+x2dx
Modifying the denominator to make it a perfect square, so that we can apply a formula x2+a2
Hence adding and subtracting 14in the denominator.
I=∫0111+x2+x+14-14dxI=∫011x+122+322dx
Here, a=32.
Now we know that, ∫1x2+a2dx=1atan-1xa
Therefore,
I=132tan-1x+123201=23tan-132×23-tan-112×23=23tan-13-tan-113=23π3-π6=233π6I=π33
Hence, option (D) is the correct answer.