∫0π2xsin2xcos2xdx=
π232
π216
π32
None of these
Explanation for Correct answer:
Finding the value of the given integral:
Let I=∫0π2xsin2xcos2xdx→(i)
We know that, ∫abfxdx=∫abfa+b-xdx
Replace x→0+π2-xwherea=0,b=π2
I=∫0π20+π2-xsin20+π2-xcos20+π2-xdx=∫0π2π2-xcos2xsin2xdx→(ii)∵sinπ2-x=cosx,cosπ2-x=sinx
Adding equation (i) and (ii), we get
2I=∫0π2xsin2xcos2xdx+∫0π2π2-xcos2xsin2xdx=∫0π2π2cos2xsin2xdx=π2∫0π2sin2x22dx∵sin2x=2sinxcosx=π8∫0π21-cos4x2dx∵cos2x=1-2sin2x=π16x-sin4x40π2∵∫cosxdx=sinx=π16×π2∵sin2π=0=π232
2I=π232⇒I=π264
Hence, option (D) is the correct answer.