Evaluate : ∫13coslogxxdx
1
coslog3
sinlog3
π4
Evaluating the given integral
I=∫13coslogxxdx
Let logx=t
Differentiating with respect to x
⇒1xdx=dt
if x=1 then t=0
if x=3 then t=log3
Thus, We have :
I=∫0log3costdt
=sint0log3
=sinlog3-sin0
I=sinlog3
Hence, Option C is the correct answer