∫-π2π2sinxdx=
0
1
2
π
Explanation for the correct option:
The value for the given integral is:
Let I=∫-π2π2sinxdx
We know that, fx=x,ifx≥0-x,ifx≤0
=-∫-π20sinxdx+∫0π2sinxdx=cosx-π20-cosx0π2=cos0-cos-π2-cosπ2-cos0=1-0-0-1=2
Thus, option C is the correct answer.