Let F1A,B,C=A∧~B∨~C∧A∨B∨~A and F2A,B=A∨B∨B→~Abe two logical expressions. Then:
F1 is not a tautology but F2 is a tautology
F1 is a tautology but F2 is not a tautology
F1 and F2 both area tautologies
Both F1 and F2 are not tautologies
Simplifying the given logical expressions.
Given data
F1A,B,C=A∧~B∨~C∧A∨B∨~A
F2A,B=A∨B∨B→~A
Consider the given equation as:
F1A,B,C=A∧~B∨~C∧A∨B∨~AF1A,B,C=A∧~B∨~A∨A∨B∧~CF1A,B,C=A∨~A∧~A∨~B∨A∨B∧~CF1A,B,C=t∧~A∨~B∨A∨B∧~CF1A,B,C=~A∨~B∨A∨B∧~CF1A,B,C=~A∨~B∨A∨B~A∨~B∧~C
~A∨~B∨A∨B=t
F1A,B,C=~A∨~B∧~C≠ttautology
F2A,B=A∨B∨B→~A=ttautology
Hence, the correct answer is Option A.