Let z be a complex number find the value of z-iz+2i=1 andz=52. Then the value of z+3i is :
10
72
154
23
Explanation for the correct option:
Calculating the value of z+3i:
Given
z-iz+2i=1⇒z-i=z+2i
This means that z lies on the perpendicular bisector of (0,1)and(0,-2)
⇒Img=-12
Now, let
z=x-i2∵z=52⇒x2=6
∴z+3i=x+5i2=x2+254=6+254=72
Hence, option (B) is the correct answer.
For a complex numberz, let Re(z) denote the real part of z. Let S be the set of all complex numbers z satisfyingz4-|z|4=4iz2, wherei=(-1). Then the minimum possible value of|z1-z2|2, wherez1,z2∈SwithRe(z1)>0 andRe(z2)<0, is _____