limx→0(1-cos2x)(3+cosx)xtan4x=
-14
12
1
2
Explanation for the correct option:
Finding the value of the given limit:
limx→0(1-cos2x)(3+cosx)xtan4x=limx→02sin2x(3+cosx)x×tan4x4x×4x∵xtan4x=x×tan4x4x×4xand1-cos2x=2sin2x=limx→02sin2xx2×limx→03+cosx4×1limx→0tan4x4x
As we know, limθ→0sin(θ)θ=1&limθ→0tan(θ)θ=1
Applying the limits,
=2(1)2×3+14×11=2×44×1=2×1×1=2
Therefore, the correct answer is option (D).
4x + 3y ≤ 60, y ≥ 2x, x ≥ 3, x, y ≥ 0