limx→0(1-cos2x)sin5xx2sin3x=
103
310
65
56
Explanation for the correct option:
Finding the value of the given limit:
limx→0(1-cos2x)sin5xx2sin3x=limx→0(1-cos2x)x2×limx→0sin5x5x×limx→05x×limx→03xsin3x×limx→013x...[∵Splittingtheterms]=limx→02sin2xx2×limx→0sin5x5x×limx→03xsin3x×limx→05x3x...∵1-cos2x=2sin2x=limx→05×23sinxx2sin5x5x3xsin3x
Applying the limits,
=1031211∵limθ→0sinθθ=1=103
Therefore, the correct answer is option (A).
Factorize √3 x2 + 5x + 2√3 = 0 into the form (ax+b)(cx+d)=0.