Evaluate limx→0ax-bxex-1=?
logeab
logeba
logea+b
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
Given, limx→0ax-bxex-1
Calculating the limit:
limx→0ax-bxex-1=limx→0ax-1-bx+1ex-1[adding1-1inthenumerator]=limx→0(ax-1)-(bx+1)ex-1=limx→0(ax-1)-(bx+1)xex-1x[Dividingnumeratoranddenominatorbyx]=limx→0ax-1x-bx-1xex-1x[∵limx→0ax-1x=lna]
Applying the limits:
=lna-lnb1=lnab[∵lnx-lny=lnxy]=logab
Therefore, the correct answer is option (A).