Evaluate:limx→0ex2-cosxx2
0
12
1
32
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
⇒limx→0ex2-cosxx2Thisisin00form⇒limx→0ex2(2x)+sinx2xDifferentiatingThisisin00form⇒limx→0ex22+2xex22x+cosx2Differentiating
Applying the limits
⇒e02+20e00+cos02⇒1(2)+0+12⇒2+12⇒32
Thus, limx→0ex2-cosxx2=32
Therefore, the correct answer is option (D).