Evaluate : limx→0log1+3x2xe5x-1
35
53
-35
-53
1
Explanation for the correct option:
Find the value of limx→0log1+3x2xe5x-1
Consider the given Equation as
I=limx→0log1+3x2xe5x-1I=limx→0log1+3x23x2×5xe5x-1×35I=35limx→0log1+3x23x2×limx→05xe5x-1
We know that,
limx→0log(1+x)x=1andlimx→0ex-1x=1
Then,
I=35×1×1I=35
Since,
limx→0log1+3x2xe5x-1=35
Hence, the correct answer is option A.
Evaluate : 1-0·03+0·02+0·05