Evaluate: limx→1tanx2-1x-1
2
12
-2
-12
Explanation for correct option:
Find the value of limx→1tanx2-1x-1
Consider the given Equation as
I=limx→1tanx2-1x-1I=tan12-11-1I=00indeterminentForm
Using the L' Hospital rule
limx→afxgx=limx→af'xg'x
I=limx→1sec2x2-12x1⇒I=sec212-12×1⇒I=sec20×2⇒I=1×2Where,sec20=1∴I=2
Hence, the correct answer is Option A.