The statement p→(q→p) is equivalent to
p→(p∨q)
p→(p∧q)
p→(p↔q)
p→(p→q)
Explanation for correct option:
Given, p→(q→p)
p→(q→p)=~p∨(q→p)=~p∨(~q∨p)
since p∨~p is always true,
=~p∨p∨q=p→(p∨q)
Thus, p→(q→p) is equivalent to p→(p∨q).
Hence, option (A) is the correct answer.