The value of -1+i31-i30 is
215i
215
-215i
65
Explanation for the correct answer:
The given expression -1+i31-i30 can be written as
-1+i31-i30=2-12+i321-i30
⇒ -1+i31-i30 =2ω1-i30 where, ω=-12+i32 is a cube root of unity ⇒ ω3=1
⇒ -1+i31-i30=230ω301-i215
⇒ -1+i31-i30 =230ω3101-2i-115 (∵a-b2=a2-2ab+b2)
⇒-1+i31-i30 =230110-215i15 [Multiply and divide by i]
⇒ -1+i31-i30 =-215×ii16 (∵i4n=1)
⇒ -1+i31-i30=-215i
Hence, the value of -1+i31-i30 is -215i.
Hence, Option (C) is the correct answer.