The value of∫02π1esinx+1dx is
π
0
2π
π2
The explanation for the correct answer.
Solve for the value of the given integral.
I=∫02π1esinx+1dx=∫02πdxesin2π-x+1=∫02πdxe-sinx+1=∫02πesinxdx1!+esinx2I=∫02πesinxdx1!+esinx=∫02πdxI=π
Hence, option(A) is correct.